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Plastic deformation mode of retained/Y phase in 
/Y-eutectoid Ti-Fe alloys 
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The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai 980, Japan 

Plastic deformation mode of/%eutectoid Ti-Fe alloys has been investigated at 300 and 77 K in 
a retained fl single phase (containing athermal ~ phase). Surface analysis and transmission 
electron microscopy show that {332} {1  1 3} twinning and {1 1 1} slip appear to be depen- 
dent on orientation, composition and deformation temperature. The {3 3 2} {1 1 3} twinning 
appears only in metastable ~ regions adjacent to the Ms curve in good agreement with 
previous work in /~-isomorphous alloys. Orientation dependence for occurrence of the 
preferential {33 2} {1 1 3} twinning among the twelve equivalent twinning systems can be 
explained in terms of the Schmid factor and the polarization of twinning shear. It is concluded 
that the {332} {1  1 3} twinning is common for/%titanium alloys and related to the instability 
of the/~ phase. 

1. In troduct ion  
The addition of transition metal elements to titanium 
is known to stabilize the b c c (/~) phase at low tem- 
peratures in these systems. Titanium alloys composed 
of the metastable b c c phase have been practically 
used due to their superior ductility at room tempera- 
ture and subsequent age-hardenability. It has been 
confirmed in many metastable /~ phase alloys [1-9] 
that the superior ductility results from the occurrence 
of unusual {3 3 2} { 1 1 3} mechanical twinning, since 
{ 1 1 2} { 1 1 1 } twinning is found extensively in other 
bcc  metals and alloys. Recent studies [10, 11] on 
temperature and composition dependence of defor- 
mation mode in/~ phase titanium alloys have revealed 
that the {332}{1 13} twinning occurs in a meta- 
stable/~ phase region adjacent to the curve showing 
composition dependence of Ms (martensitic start) tem- 
perature. For an alloy with its composition within this 
region, co phase forms easily on ageing at relatively 
low temperatures. Therefore, the/~ phase is considered 
to be very unstable. By increasing the content of the 
alloying element, away from the Ms curve, the defor- 
mation mode was found to change from twinning to 
slip [10, 11]. The/~ phase is now hard to decompose 
into the co phase on ageing at low temperatures. 
Therefore, the {3 3 2} { 1 1 3} twinning may be related 
to thermal instability of the fi phase. 

It is, however, in /~-isomorphous alloys such as 
Ti-Mo [1-9], Ti-V [4, 10] and Ti-Nb [11] that the 
{332}{113}  twinning has been reported. In /~- 
eutectoid alloys such as Ti-Fe, Ti-Cr and Ti-Mn, a 
metastable/~ phase can also be retained at low tem- 
peratures by rapid cooling. The/~ phase is known to 
decompose on ageing in a similar manner to that in 
/~-isomorphous alloys [12]. Therefore, the objective of 
the present paper is to investigate the plastic defor- 
mation mode in a metastable /~-eutectoid titanium 
alloy for a further understanding of {332} {1 1 3} 
twinning. 
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2. Exper imenta l  p r o c e d u r e  
Ti-4, 4.5, 5, 6 and 10wt% Fe alloys were prepared 
by arc-melting of sponge titanium ( > 99.8 wt %) and 
electrolytic iron (>99 .9wt%)  in an argon atmos- 
phere. The arc-melted buttons were hot-rolled at 
1200 K to approximately 3 mm thick plates. Bars with 
a square cross-section of 2.5mm x 2.5mm were 
obtained from the plates by cutting and grinding. 
They were subjected to strain annealing for 36 ksec at 
1473 K for grain growth. Single crystals of 2.5 mm x 
2.5 mm x 5 mm were spark-cut from the bars having 
large grains of bamboo type structure. The single 
crystals were sealed in a vacuum quartz tube, hom- 
ogenized at 1273 K for 3.6 ksec and quenched into iced 
water. After mechanical and chemical polishing, the 
samples were deformed at 300 and 77 K using an 
Instron type testing machine at a strain rate of 1.7 x 
10 -s sec -1 . The deformation mode was determined by 
two surface trace analysis and transmission electron 
microscopy (TEM) techniques. 

3. Resul t s  and d i s c u s s i o n  
Recently, Yamane and Ito [13] measured the Ms tem- 
perature of Ti-Fe alloys. According to them, the mar- 
tensitic transformation can be suppressed by rapid 
cooling in Ti-Fe alloys containing > 4 wt % Fe. Elec- 
tron microscopic observations were performed on thin 
foils obtained from as-quenched compression samples 
of Ti-4, 4.5, 5, 6, 10% Fe alloys. In this study marten- 
sitic transformation was suppressed in all the samples. 
Fig. 1 shows the {01 1}~ diffraction patterns of 
as-quenched Ti-10% Fe, Ti-6% Fe and Ti-4% Fe. 
While weak and diffuse co reflections are present in the 
as-quenched Ti-10% Fe alloy, clear and intense co 
reflections are present in the Ti-6% Fe and Ti-4% Fe 
alloys. Dark field micrographs obtained from co reflec- 
tions in Figs. 1 b and c show the presence of a uniform 
dispersion of fine co particles in the/~ matrix (Fig. 2). 
The co particles seem to be ellipsoidal in contrast to 
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Figure 1 Electron diffraction patterns of quenched (a) Ti-10% Fe, 
(b) Ti-6% Fe and (c) Ti-4% Fe (Zone axis [011]~). 

those of aged fl Ti-Fe alloys containing cuboidal 
particles [14]. This result may be related to the fact 
that o phase morphology is controlled by the lattice 
misfit between the precipitate and the fi matrix [14], 
since the misfit in fl Ti-Fe alloys increases remarkably 
on ageing [15]. 

The Ti-Fe alloys in the single phase fl (containing 
only athermal ~o phase) were deformed below 1% 
plastic strain prior to two surface trace analysis and 
electron microscopy. In Ti-10% Fe, slip appeared 
independent of the crystallographic orientation of the 
compression axis (shown as a, d, e . . .  in Fig. 3) and 
deformation temperature. Fig. 3 shows the result at 
300 K, indicating that the observed slip planes (a', d', 
e' . . .) correspond with the maximum resolved shear 
stress planes. Compression axes have a tendency to be 
concentrated around [0 0 1], presumably by causing a 

recrystallization texture during strain annealing heat 
treatments. The observed slip planes at 77 K were 
found to deviate from the maximum resolved shear 
stress plane to (1 1 2). These results are in good agree- 
ment with previous work in Ti-V [16]. In Ti-6% Fe, 
only slip also appeared on deformation at 300 and 
77K. 

On the other hand, stress-induced products (SIP) as 
well as slip appeared in Ti-5% Fe depending on the 
orientation of compression axis. Small discontinuous 
serrations accompanied by significant work hardening 
occurred in a stress-strain curve when SIP appeared, 
while continuous parabolic work hardening was seen 
when slip occurred. Typical optical micrographs of 
SIP in Ti-5% Fe deformed at 77 K is shown in Fig. 
4a. SIP was found to form approximately along 
(3 3 2). If  the SIP is mechanical twinning in the same 
type as that in/~-isomorphous alloys such as Ti-V, 
Ti-Mo and Ti-Nb, the twinning system is regarded as 
(3 3 2)[i 1 3]. Then thin plates having the orientation 
illustrated in Fig. 4b were spark-cut from the com- 
pressed sample and thinned electrolytically for elec- 
tron microscopy. Fig. 5a shows an electron micro- 
graph taken from a region containing the (3 3 2) 
boundary in the thin foil. Figs. 5b and c show an 
electron diffraction pattern at the boundary and the 
corresponding key diagram, respectively, indicating 
that the SIP is the mechanical twin of (3 3 2)[i 1 3] 
twinning system. The microstructure is clearly divided 

Figure 2 Dark-field micrographs showing o~ particles in a bcc matrix of quenched (a) Ti-6% Fe and (b) Ti-4% Fe. 
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Figure 3 Observed slip planes in Ti-10% Fe deformed at 300K. a', 
d ' , . . ,  represent the slip planes in samples with the compression 
axes a, d, . . . ,  respectively. 
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Figure 5 Bright-field micrograph showing { 3 3 2} twin boundary in 
Ti-5% Fe deformed at (a) 77 K, (b) selected area diffraction pattern 
at the boundary and (c) key diagram. 

by the boundary;  that  is, the twin contains a high 
density o f  dislocations, while the matrix with a very 
low density of  dislocations is characterized by mott led 
contrast  resulting from the co phase. A highly damaged 
region has been found in a matrix adjacent to the 
{3 3 2} twin boundary  o f  T i - M o  [1] and T i - N b  [11] 
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Figure 4 Optical micrographs showing stress-induced products 
in T~5% Fe deformed at (a) 77 K and (b) schematic diagram of 
the thin plate obtained from the compressed sample for electron 
microscopy. 
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alloys in conlrast  to the present results. The T i - M o  
and T i - N b  alloys contained very diffuse co phase 
and showed sharp load drops on deformation,  being 
different f rom the present alloys. Therefore,  the 
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Figure 6 Observed slip and twinning planes in Ti-5% Fe deformed 
at 77 K. a', b', c ' . . .  represent the slip planes (closed circles) or 
twinning planes (open circles) in samples with the compression axes 
a, b, c . . .  , respectively. 
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Figure 7 Observed slip and twinning planes in T i - 5 %  Fe deformed 
at 300 K. Letters and symbols represent the same meaning as in Fig. 
6. Dotted contours indicate the Schmid factors for (3 3 2)[i 1 3] 
twinning. 

microstructure at the twin boundary may be related to 
the difference of accommodation of {332}<11 3) 
twinning. Fig. 6 shows the orientation dependence of 
deformation mode in the Ti-5% Fe deformed at 77 K. 
(332)[T 13] twinning is found to be preferential, 
although there is a considerable scatter in the observed 
twinning planes. Slip seems to appear in samples 
having a compression axis close to [0 11]. Fig. 7 shows 
the orientation dependence of deformation mode in 
the Ti-5% Fe alloy deformed at 300K. Compared 
with Fig. 6, slip is preferential to twinning. Recently, 
it has been shown that the operative twinning system 
among the twelve {3 3 2} < 1 13) systems is controlled 
by the Schmid factor and the polarization of twinning 
shear [10]. The result in Fig. 7 can be explained qual- 
itatively on the basis of this concept, namely the 
(33 2)[113] twinning system is favourable to operate 
under compressive stress in all orientations within the 
[00 1]-[01 I]-[T 11] triangle [10]. The Schmid factors 
for the (3 3 2)[113] system are illustrated by dotted 
contours in Fig. 7. One can see that twinning occurs 
in the samples with the large Schmid factors for 
(332)[T 13], excluding sample b (the reason why 
twinning did not occur in the sample b is uncertain at 
present, but a critical value of the Schmid factor for 
producing the twinning may be close to 0.48). Any 
other systems which are favourable under compressive 
stress, do not have so large a value as ~ 0.48. On the 
other hand, samples g and c have large Schmid factors 
(~0.48) for (233)[31 1]. However, this twinning 
system can operate under tensile stress [10]. 

Fig. 8 shows the result of Ti-4.5% Fe deformed 
at 300K. The (332)[71 3] twinning is seen to be 

Figure 8 Observed twinning and slip planes in Ti 4.5% Fe deformed 
at 300 K. a', b' ,  c' represent the twinning planes in samples with the 
compression axes a, b, c . . . ,  respectively. ~ represents coexistence 
of twinning and slip. 

preferential in all the orientations. In samples d and e 
slip was coexistent with the twinning. The (33 2)[113] 
twinning was also preferential in Ti-4.5 % Fe deformed 
at 77 K. The deformation mode could not be deter- 
mined in Ti-4% Fe, since the alloy often failed 
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Figure 9 Temperature and composition dependence of plastic 
deformation mode in ~-T~Fe alloys. 
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without any macroscopic plastic strain. The results 
obtained are summarized in Fig. 9. This figure clearly 
indicates that the {3 3 2} ( 1 1 3) twinning appears in 
the fl region adjacent to the Ms curve. This result is in 
good agreement with that of fi-isomorphous alloys 
[10, 11]. Thus, it is concluded that the {3 3 2} (1 1 3) 
twinning is common for fl-titanium alloys and related 
to the instability of the fl phase. 

It is not possible at present to explain why the 
unusual twinning system is commonly observed in 
metastable fi-titanium alloys. To understand the 
mechanism of the { 3 3 2} (1 1 3) twinning, further 
studies should be performed on detailed electron 
microscopic observations of microstructures inside a 
twin in relation to a high density of dislocations and 
the co phase, and accommodation microstructures in a 
matrix adjacent to the twin boundary. This work is in 
progress. 
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